Self-duality for rings related to skew polynomials
نویسندگان
چکیده
منابع مشابه
Self-dual skew codes and factorization of skew polynomials
The construction of cyclic codes can be generalized to so-called ”module θ-codes” using noncommutative polynomials. The product of the generator polynomial g of a self-dual ”module θ-code” and its ”skew reciprocal polynomial” is known to be a noncommutative polynomial of the form X − a, reducing the problem of the computation of all such codes to the resolution of a polynomial system where the ...
متن کاملExtending Real Valuations to Skew Polynomial Rings
Let D be a division ring, T be a variable over D, σ be an endomorphism of D, δ be a σ-derivation on D and R = D[T ;σ, δ] the left skew polynomial ring over D. We show that the set (V alν(R), ) of σ-compatible real valuations which extend to R a fixed proper real valuation ν on D has a natural structure of parameterized complete non-metric tree, where is the partial order given by μ μ̃ if and onl...
متن کاملSkew Schubert Polynomials
We define skew Schubert polynomials to be normal form (polynomial) representatives of certain classes in the cohomology of a flag manifold. We show that this definition extends a recent construction of Schubert polynomials due to Bergeron and Sottile in terms of certain increasing labeled chains in Bruhat order of the symmetric group. These skew Schubert polynomials expand in the basis of Schub...
متن کاملOre extensions of skew $pi$-Armendariz rings
For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We nex...
متن کاملThe skew Schubert polynomials
We obtain a tableau definition of the skew Schubert polynomials named by Lascoux, which are defined as flagged double skew Schur functions. These polynomials are in fact Schubert polynomials in two sets of variables indexed by 321-avoiding permutations. From the divided difference definition of the skew Schubert polynomials, we construct a lattice path interpretation based on the Chen-Li-Louck ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1987
ISSN: 0021-8693
DOI: 10.1016/0021-8693(87)90011-1